# Antifungal Potential of Peptide Mimetics in a Mouse Model of Invasive Candidiasis

Mobaswar Hossain Chowdhury, Ph.D.

Department of Oral Biology



Invasive Candidiasis: 4<sup>th</sup> common cause of hospital acquired infection in US

Available Therapy for Invasive Candidiasis

Antifungal drugs:

≻ Fluconazole

➤ Amphotericin-B

> Echinocandins

Limitations:

➤ Resistance

➤ Toxicity

## Antimicrobial Peptides (AMPs)

**Characteristics:** 

- > Cationic & amphipathic in nature
- Broad-spectrum antimicrobials
- > Little Resistance
- > Low antigenicity

### Limitations:

- > Protease sensitive
- > Expensive
- Often are inactivated by other proteins

## **Antimicrobial Peptide Mimetics**

Designed and synthesized to mimic the action of AMPs in both structure and activity based on their cationic and amphipathic characteristics

#### **Advantages:**

- Broad spectrum activity
- Active against drug resistant strains
- Low resistance potential
- Not degradable by Proteases
- Facile synthesis and inexpensive manufacturing



Designed by chemists at Fox Chase Chemical Diversity Center Published report of our lab:

Ryan LK et al. 2014. Antimicrobial Agents and Chemotherapy 58:3820-3827

- Peptide mimetics are effective against both planktonic and biofilm form of Candida albicans.
- Peptide mimetics are also effective for the topical treatment of oral candidiasis in mouse
- > Low *in vivo* systemic toxicity upon oral gel treatment
- Failed to develop resistant strains of Candida albicans

## **Hypothesis**



#### General Structure of Peptide Mimetic Compounds

Mimetics were designed based on the amphipathic and cationic structures of defensing

Three different series were designed: Tricyclic (TC), Triaryl (TA) and Bis-Amide (BA). eight promising leads were tested.



## In vitro Antifungal Studies

| Compound                                    | TC-1      | TA-1    | BA-4      | TC-4      |
|---------------------------------------------|-----------|---------|-----------|-----------|
| Series                                      | Tricyclic | Triaryl | Bis-Amide | Tricyclic |
| Activity against <i>C. albicans</i> (µg/ml) |           |         |           |           |
| MIC                                         | 4         | 4       | 4         | 2         |
| MFC                                         | 8         | 8       | 16        | 8         |
| MIC + 50% Human serum                       | 4         | 4       | 4         | 16        |
| IC50                                        | 1.44      | 4.24    | 3.80      | 0.45      |
| Other Yeast Species (MIC, µg/mI)            |           |         |           |           |
| C. tropicalis                               | 2-4       | 4-8     | 8         | 4         |
| C. parapsilosis                             | 2         | 4-8     | 1         | 1         |
| C. dubliniensis                             | 4         | 8       | 32        | 16        |
| C. glabrata                                 | 2         | 4       | 8         | 2         |
| C. krusei                                   | 16        | 32      | 8         | 0.50      |
| Cytotoxicity (µM)                           |           |         |           |           |
| 3T3                                         | 436       | 311     | 358       | 478       |
| MTD (mg/kg free base)                       | 20        | 10      | 10        | 10        |

## In Vitro Activity of TC-1 Against IC Clinical Isolates

| Species       | Strain | Resistance  | MIC (µg/ml) | MFC(µg/ml) |
|---------------|--------|-------------|-------------|------------|
| C. albicans   | SC5314 | none        | 2           | 8          |
| C. glabrata   | TG-1   | fluconazole | 4           | 16         |
| C. glabrata   | TG-3   | fluconazole | 4           | 8          |
| C. glabrata   | TG-4   | fluconazole | 4           | 8          |
| C. glabrata   | TG-5   | fluconazole | 2           | 8          |
| C. glabrata   | TG-6   | fluconazole | 2           | 8          |
| C. tropicalis | CT-2   | fluconazole | 4           | 16         |

- Male CD-1 mice, 8 weeks old, were made neutropenic with i.p. injection of cylophosphamide(150 mg/kg in 10 mL/kg) at 4 and 1 day before inoculation
- Each animal was then inoculated by injecting 0.1 mL of 3.5 X 10<sup>5</sup> cfu / ml C. albicans in the tail vein
- Drugs were injected sub-cutaneously at 2 hour after inoculation

| Experimental groups | Treatment                  | Group size | Time points |
|---------------------|----------------------------|------------|-------------|
| Infected control    | No treatment               | 5          | 2hr         |
| Infected control    | No treatment               | 5          | 24 hr       |
| Treatment 1         | High dose once<br>(s.c.)   | 5          | 24 hr       |
| Treatment 2         | Medium dose once<br>(s.c.) | 5          | 24 hr       |
| Treatment 3         | Low dose once<br>(s.c.)    | 5          | 24 hr       |
| Fluconazole         | 20 mg/kg oral<br>gavage    | 5          | 24 hr       |
| Vehicle             | (s.c.)                     | 5          | 24 hr       |

### TC-1: In vivo Dose Response Study





# New Compounds Tested

### Compound FC3785 FC4812 FC4073 FC4995

### Series Bis-amide Bi-aryl Bis-amide Bis-amide

| Compounds                             | FC3785 | FC4812  | FC4073  | FC4995 |
|---------------------------------------|--------|---------|---------|--------|
| In vitro data                         |        |         |         |        |
| Activity against C. albicans          |        |         |         |        |
| (ug/ml)                               |        | 4       | 4       | 0      |
|                                       | 4      | 4       | 4       | 8      |
| MFC                                   | 8      | 8       | 8       | 16     |
| MIC+50% Human Serum                   | 8      | 8       | 8       | 16     |
| MFC+50% Human Serum                   | 16     | 16      | 16      | 32     |
| Other Yeast Species (MIC, µg/<br>ml)  |        |         |         |        |
| C. tropicalis                         | 2      | 8       | 4       | 4      |
| C. parapsilosis                       | 1      | 2       | 2       | 4      |
| C. dublinensis                        | 2      | 4       | 2       | 4      |
| C. glabrata                           | 4      | 4       | 4       | 8      |
| C. krusei                             | 2      | 4       | 2       | 4      |
| Cytotoxicity EC <sub>50</sub> (μΜ)    |        |         |         |        |
| 373                                   | 891    | >788.6  | >1398.6 | 390    |
| HEPG2                                 | 315.1  | >788.6  | >1398.6 | 249    |
| Hemolysis EC <sub>50</sub> (µM)       | 1453.5 | >1577.3 | 1331    | >1272  |
| In vivo data                          |        |         |         |        |
| MTD (mg/kg free base)                 | 5      | 20      | ≥40     | ≥40    |
| Log <sub>10</sub> reduction of kidney | 1.41   | 0.81    | 2.03    | 1.85   |

# FC4073: Dose Response Study



# Summary Mechanism of Action Studies

- Inhibition by cations (Mg<sup>++</sup>, Ca<sup>++</sup> and La<sup>+++</sup>) show that peptide mimetics bind to the anionic surface head groups of the fungal membrane
- Mimetics rapidly form pores in the membrane as shown by propidium iodide incorporation
- Membrane is disrupted leading to cell death (EM and fluorescence microscopy)

# **Membrane Disruption**

Control

TC-1



# Summary and Conclusions

- ➤We have identified a number of small molecule mimics of antimicrobial peptides that exhibit potent antifungal activity against *C. albicans in vitro*, and *in vivo* in a mouse model of invasive candidiasis
- ➤Compounds are membrane active and action is very rapid, so no resistance develops
- ➤These compounds show great potential for development as effective antifungal drugs to treat both topical and systemic candidiasis

#### Acknowledgement

### Diamond Lab:

Gill Diamond, Ph.D. Lorenzo Menzel, Ph.D. Kristina DiFranco, Ph.D. David Brice William Ruddick Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine: Lisa Kathleen Ryan, Ph.D. Kartikeya Cherabuddi, MD

<u>UF Health SHANDS Clinical Laboratory</u> Beth Fisher Alyssa Lewis

#### Fox Chase Chemical Diversity Center:

Richard W. Scott, Ph.D. Katie Freeman, Ph.D. Damian Weaver, Ph.D. Jeff Pelletier, Ph.D.

<u>Cellceutix, Inc.</u> Leo Ehrlich, CPA Krishna Menon, VMD, Ph.D.

#### Funding:

National Institutes of Health (NIAID) R44AI106270

Technical assistance from Ricerca, Inc.